
International Journal on Emerging Technologies (Special Issue on NCRIET-2015) 6(2): 182-187(2015)

ISSN No. (Print) : 0975-8364
ISSN No. (Online) : 2249-3255

Key-aggregate crypto system for scalable data sharing in cloud
storage

Prof. Vishal More* and Prof. Amit Kumar Singh**
*Department of CSE, BKIT, Bhalki VTU, Belgaum, Karnataka, INDIA

**Department of ECE, BKIT, Bhalki VTU, Belgaum, Karnataka,

(Corresponding author: Prof. Vishal More)

(Published by Research Trend, Website: www.researchtrend.net)

ABSTRACT: Data sharing is an important functionality in cloud storage. In this paper, we show how to
securely, efficiently, and flexibly share data with others in cloud storage. We describe new public-key
cryptosystems that produce constant-size ciphertexts such that efficient delegation of decryption rights for
any set of ciphertexts are possible. The novelty is that one can aggregate any set of secret keys and make them
as compact as a single key, but encompassing the power of all the keys being aggregated. In other words, the
secret key holder can release a constant-size aggregate key for flexible choices of ciphertext set in cloud
storage, but the other encrypted files outside the set remain confidential. This compact aggregate key can be
conveniently sent to others or be stored in a smart card with very limited secure storage. We provide formal
security analysis of our schemes in the standard model. We also describe other application of our schemes. In
particular, our schemes give the first public-key patient-controlled encryption for flexible hierarchy, which
was yet to be known.

I. INTRODUCTION

CLOUD storage is gaining popularity recently. In
enterprise settings, we see the rise in demand for data
outsourcing, which assists in the strategic management
of corporate data. It is also used as a core technology
behind many online services for personal applications.
Nowadays, it is easy to apply for free accounts for
email, photo album, file sharing and/or remote access,
with storage size more than 30 GB (or a few dollars for
more than 2 TB). Together with the current wireless
technology, users can access almost all of their files and
emails by a mobile phone in any corner of the world.
Considering data privacy, a traditional way to ensure it
is to rely on the server to enforce the access control
after authentication (e.g., [1]), which means any
unexpected privilege escalation will expose all data. In
a shared-tenancycloud computing environment, things
become even worse. Data from different clients can be
hosted on separate virtual machines (VMs) but reside
on a single physical machine. Data in a target VM
could be stolen by instantiating another VM coresident
with the target one [2]. Regarding availability of files,
there are a series of cryptographic schemes which go as
far as allowing a third-party auditor to check the
availability of files on behalf of the data owner without
leaking anything about the data [3], or without
compromising the data owners anonymity [4].

Likewise, cloud users probably will not hold the strong
belief that the cloud server is doing a good job in terms
of confidentiality. A cryptographic solution, for
example, [5], with proven security relied on number-
theoretic assumptions is more desirable, whenever the
user is not perfectly happy with trusting the security of
the VM or the honesty of the technical staff. These
users are motivated to encrypt their data with their own
keys before uploading them to the server. Data sharing
is an important functionality in cloud storage.

1.2 Literature Survey

1 “Privacy- Preserving Public Auditing for Secure
Cloud Storage,”
Using cloud storage, users can remotely store their data
and enjoy the on-demand high-quality applications and
services from a shared pool of configurable computing
resources, without the burden of local data storage and
maintenance. However, the fact that users no longer
have physical possession of the outsourced data makes
the data integrity protection in cloud computing a
formidable task, especially for users with constrained
computing resources. Moreover, users should be able to
just use the cloud storage as if it is local, without
worrying about the need to verify its integrity.

et

www.researchtrend.net

More and Singh 183

Thus, enabling public audit ability for cloud storage is
of critical importance so that users can resort to a third-
party auditor (TPA) to check the integrity of outsourced
data and be worry free. To securely introduce an
effective TPA, the auditing process should bring in no
new vulnerabilities toward user data privacy, and
introduce no additional online burden to user. In this
paper, we propose a secure cloud storage system
supporting privacy-preserving public auditing. We
further extend our result to enable the TPA to perform
audits for multiple users simultaneously and efficiently.
Extensive security and performance analysis show the
proposed schemes are provably secure and highly
efficient. Our preliminary experiment conducted on
Amazon EC2 instance further demonstrates the fast
performance of the design.
2” Storing Shared Data on the Cloud via Security-
Mediator,”
Nowadays, many organizations outsource data storage
to the cloud such that a member (owner) of an
organization can easily share data with other members
(users). Due to the existence of security concerns in the
cloud, both owners and users are suggested to verify the
integrity of cloud data with Provable Data Possession
(PDP) before further utilization on data. However,
previous methods either unnecessarily reveal the
identity of a data owner to the untrusted cloud or any
public verifiers, or introduce significant overheads on
verification metadata to preserve anonymity. In this
paper, we propose a simple and efficient publicly
verifiable approach to ensure cloud data integrity
without sacrificing the anonymity of data owners nor
requiring significant verification metadata. Specifically,
we introduce a security-mediator (SEM), which is able
to generate verification metadata (i.e., signatures) on
outsourced data for data owners. Our approach
decouples the anonymity protection mechanism from
the PDP. Thus, an organization can employ its own
anonymous authentication mechanism, and the cloud is
oblivious to that since it only deals with typical PDP-
metadata, Consequently, there is no extra storage
overhead when compared with existing non-anonymous
PDP solutions. The distinctive features of our scheme
also include data privacy, such that the SEM does not
learn anything about the data to be uploaded to the
cloud at all, which is able to minimize the requirement
of trust on the SEM. In addition, we can also extend our
scheme to work with the multi-SEM model, which can
avoid the potential single point of failure existing in the
single-SEM scenario. Security analyses prove our
scheme is secure, and experiment results demonstrate
our scheme is efficient.

3. “Dynamic Secure Cloud Storage with Provenance,”
One concern in using cloud storage is that the sensitive
data should be confidential to the servers which are
outside the trust domain of data owners. Another issue
is that the user may want to preserve his/her anonymity
in the sharing or accessing of the data (such as in Web
2.0 applications). This paper addresses the problem of
building a secure cloud storage system which supports
dynamic users and data provenance. Previous system is
based on specific constructions and does not offer all of
the aforementioned desirable properties. Most
importantly, dynamic user is not supported. We study
the various features offered by cryptographic
anonymous authentication and encryption mechanisms;
and instantiate our design with verifier-local revocable
group signature and identity-based broadcast encryption
with constant size ciphertext and private keys. To
realize our concept, we equip the broadcast encryption
with the dynamic ciphertext update feature, and give
formal security guarantee against adaptive chosen-
ciphertext decryption and update attacks.
4. “Dynamic and Efficient Key Management for Access
Hierarchies,”
Hierarchies arise in the context of access control
whenever the user population can be modeled as a set
of partially ordered classes (represented as a directed
graph). A user with access privileges for a class obtains
access to objects stored at that class and all descendant
classes in the hierarchy. The problem of key
management for such hierarchies then consists of
assigning a key to each class in the hierarchy so that
keys for descendant classes can be obtained via
efficient key derivation. We propose a solution to this
problem with the following properties: (1) the space
complexity of the public information is the same as that
of storing the hierarchy; (2) the private information at a
class consists of a single key associated with that class;
(3) updates (i.e., revocations and additions) are handled
locally in the hierarchy; (4) the scheme is provably
secure against collusion; and (5) each node can derive
the key of any of its descendant with a number of
symmetric-key operations bounded by the length of the
path between the nodes. Whereas many previous
schemes had some of these properties, ours is the first
that satisfies all of them. The security of our scheme is
based on pseudorandom functions, without reliance on
the Random Oracle Model. Another substantial
contribution of this work is that we are able to lower the
key derivation time at the expense of modestly
increasing the public storage associated with the
hierarchy. The key derivation work for such graphs is
then linear in d and the increase in the number of edges
is by the factor O (log d -
dimensional case.

More and Singh 184

Finally, by making simple modifications to our scheme,
we show how to handle extensions proposed by
Crampton [2003] of the standard hierarchies to “limited
depth” and reverse inheritance.
5. “Attribute-Based Encryption for Fine-Grained
Access Control of Encrypted Data,”
As more sensitive data is shared and stored by third-

party sites on the Internet, there will be a need to
encrypt data stored at these sites. One drawback of
encrypting data, is that it can be selectively shared only
at a coarse-grained level (i.e., giving another party your
private key). We develop a new cryptosystem for fine-
grained sharing of encrypted data that we call Key-
Policy Attribute-Based Encryption (KP-ABE). In our
cryptosystem, ciphertexts are labeled with sets of
attributes and private keys are associated with access
structures that control which ciphertexts a user is able
to decrypt.

II. AIM AND OBJECTIVE

The main objective of the any citation analysis is to
provide useful information to the scholars in searching
of literature and to help the librarian in selecting
relevant sources. The specific objectives of the present
study are to find out the information sources cited by
researchers in the field of Key-aggregate crypto system
for scalable data sharing in cloud storage,

(i) To find-out the authorship pattern and degree of
collaboration in aggregate key for flexible choices,
(ii) To identify the core cryptosystem,
(iii) To examine the subject wise break up of citations,
(iv) To know the country wise distribution of CLOUD
storage
(v) To identify the language wise distribution of journal
citations.

III. DETAILED DESIGN

Software design sits at the technical kernel of the
software engineering process and is applied regardless
of the development paradigm and area of application.
Design is the first step in the development phase for any
engineered product or system. The designer’s goal is to
produce a model or representation of an entity that will
later be built. Beginning, once system requirement have
been specified and analyzed, system design is the first
of the three technical activities -design, code and test
that is required to build and verify software. The
importance can be stated with a single word “Quality”.
Design is the place where quality is fostered in software
development. Design provides us with representations
of software that can assess for quality.

Design is the only way that we can accurately translate
a customer’s view into a finished software product or
system. Software design serves as a foundation for all
the software engineering steps that follow. Without a
strong design we risk building an unstable system – one
that will be difficult to test, one whose quality cannot
be assessed until the last stage.
During design, progressive refinement of data structure,
program structure, and procedural details are developed
reviewed and documented. System design can be
viewed from either technical or project management
perspective. From the technical point of view, design is
comprised of four activities – architectural design, data
structure design, interface design and procedural
design.

A. System Study
Feasibility Study. The feasibility of the project is
analyzed in this phase and business proposal is put forth
with a very general plan for the project and some cost
estimates. During system analysis the feasibility study
of the proposed system is to be carried out. This is to
ensure that the proposed system is not a burden to the
company. For feasibility analysis, some understanding
of the major requirements for the system is essential.
Three key considerations involved in the feasibility

analysis are
• ECONOMICAL FEASIBILITY
• TECHNICAL FEASIBILITY
• SOCIAL FEASIBILITY

ECONOMICAL FEASIBILITY
This study is carried out to check the economic impact
that the system will have on the organization. The
amount of fund that the company can pour into the
research and development of the system is limited. The
expenditures must be justified. Thus the developed
system as well within the budget and this was achieved
because most of the technologies used are freely
available. Only the customized products had to be
purchased.
TECHNICAL FEASIBILITY
This study is carried out to check the technical

feasibility, that is, the technical requirements of the
system. Any system developed must not have a high
demand on the available technical resources. This will
lead to high demands on the available technical
resources. This will lead to high demands being placed
on the client. The developed system must have a
modest requirement, as only minimal or null changes
are required for implementing this system.

More and Singh 185

SOCIAL FEASIBILITY
The aspect of study is to check the level of acceptance
of the system by the user. This includes the process of
training the user to use the system efficiently. The user
must not feel threatened by the system, instead must
accept it as a necessity. The level of acceptance by the
users solely depends on the methods that are employed
to educate the user about the system and to make him
familiar with it.

IV. BLOCK DIAGRAM

A. Data Flow Diagram
1. The DFD is also called as bubble chart. It is a simple
graphical formalism that can be used to represent a
system in terms of input data to the system, various
processing carried out on this data, and the output data
is generated by this system.
2. The data flow diagram (DFD) is one of the most
important modeling tools. It is used to model the system
components. These components are the system process,
the data used by the process, an external entity that
interacts with the system and the information flows in
the system.
B. UML Diagrams
UML stands for Unified Modeling Language. UML is a
standardized general-purpose modeling language in the
field of object-oriented software engineering. The
standard is managed, and was created by, the Object
Management Group.
The goal is for UML to become a common language for
creating models of object oriented computer software.
In its current form UML is comprised of two major
components: a Meta-model and a notation. In the
future, some form of method or process may also be
added to; or associated with, UML.

The UML represents a collection of best engineering
practices that have proven successful in the modeling of
large and complex systems.The UML is a very
important part of developing objects oriented software
and the software development process. The UML uses
mostly graphical notations to express the design of
software projects.
4.3 GOALS:The Primary goals in the design of the
UML are as follows:
1.Provide users a ready-to-use, expressive visual
modeling Language so that they can develop and
exchange meaningful models.
2.Provide extendibility and specialization mechanisms
to extend the core concepts.
3.Be independent of particular programming languages
and development process.
4.Provide a formal basis for understanding the
modeling language.
5.Encourage the growth of OO tools market.
6.Support higher level development concepts such as
collaborations, frameworks, patterns and components.
7.Integrate best practices.

D. Use Case Diagram
A use case diagram in the Unified Modeling Language
(UML) is a type of behavioral diagram defined by and
created from a Use-case analysis. Its purpose is to
present a graphical overview of the functionality
provided by a system in terms of actors, their goals
(represented as use cases), and any dependencies
between those use cases. The main purpose of a use
case diagram is to show what system functions are
performed for which actor. Roles of the actors in the
system can be depicted.

More and Singh 185

SOCIAL FEASIBILITY
The aspect of study is to check the level of acceptance
of the system by the user. This includes the process of
training the user to use the system efficiently. The user
must not feel threatened by the system, instead must
accept it as a necessity. The level of acceptance by the
users solely depends on the methods that are employed
to educate the user about the system and to make him
familiar with it.

IV. BLOCK DIAGRAM

A. Data Flow Diagram
1. The DFD is also called as bubble chart. It is a simple
graphical formalism that can be used to represent a
system in terms of input data to the system, various
processing carried out on this data, and the output data
is generated by this system.
2. The data flow diagram (DFD) is one of the most
important modeling tools. It is used to model the system
components. These components are the system process,
the data used by the process, an external entity that
interacts with the system and the information flows in
the system.
B. UML Diagrams
UML stands for Unified Modeling Language. UML is a
standardized general-purpose modeling language in the
field of object-oriented software engineering. The
standard is managed, and was created by, the Object
Management Group.
The goal is for UML to become a common language for
creating models of object oriented computer software.
In its current form UML is comprised of two major
components: a Meta-model and a notation. In the
future, some form of method or process may also be
added to; or associated with, UML.

The UML represents a collection of best engineering
practices that have proven successful in the modeling of
large and complex systems.The UML is a very
important part of developing objects oriented software
and the software development process. The UML uses
mostly graphical notations to express the design of
software projects.
4.3 GOALS:The Primary goals in the design of the
UML are as follows:
1.Provide users a ready-to-use, expressive visual
modeling Language so that they can develop and
exchange meaningful models.
2.Provide extendibility and specialization mechanisms
to extend the core concepts.
3.Be independent of particular programming languages
and development process.
4.Provide a formal basis for understanding the
modeling language.
5.Encourage the growth of OO tools market.
6.Support higher level development concepts such as
collaborations, frameworks, patterns and components.
7.Integrate best practices.

D. Use Case Diagram
A use case diagram in the Unified Modeling Language
(UML) is a type of behavioral diagram defined by and
created from a Use-case analysis. Its purpose is to
present a graphical overview of the functionality
provided by a system in terms of actors, their goals
(represented as use cases), and any dependencies
between those use cases. The main purpose of a use
case diagram is to show what system functions are
performed for which actor. Roles of the actors in the
system can be depicted.

More and Singh 185

SOCIAL FEASIBILITY
The aspect of study is to check the level of acceptance
of the system by the user. This includes the process of
training the user to use the system efficiently. The user
must not feel threatened by the system, instead must
accept it as a necessity. The level of acceptance by the
users solely depends on the methods that are employed
to educate the user about the system and to make him
familiar with it.

IV. BLOCK DIAGRAM

A. Data Flow Diagram
1. The DFD is also called as bubble chart. It is a simple
graphical formalism that can be used to represent a
system in terms of input data to the system, various
processing carried out on this data, and the output data
is generated by this system.
2. The data flow diagram (DFD) is one of the most
important modeling tools. It is used to model the system
components. These components are the system process,
the data used by the process, an external entity that
interacts with the system and the information flows in
the system.
B. UML Diagrams
UML stands for Unified Modeling Language. UML is a
standardized general-purpose modeling language in the
field of object-oriented software engineering. The
standard is managed, and was created by, the Object
Management Group.
The goal is for UML to become a common language for
creating models of object oriented computer software.
In its current form UML is comprised of two major
components: a Meta-model and a notation. In the
future, some form of method or process may also be
added to; or associated with, UML.

The UML represents a collection of best engineering
practices that have proven successful in the modeling of
large and complex systems.The UML is a very
important part of developing objects oriented software
and the software development process. The UML uses
mostly graphical notations to express the design of
software projects.
4.3 GOALS:The Primary goals in the design of the
UML are as follows:
1.Provide users a ready-to-use, expressive visual
modeling Language so that they can develop and
exchange meaningful models.
2.Provide extendibility and specialization mechanisms
to extend the core concepts.
3.Be independent of particular programming languages
and development process.
4.Provide a formal basis for understanding the
modeling language.
5.Encourage the growth of OO tools market.
6.Support higher level development concepts such as
collaborations, frameworks, patterns and components.
7.Integrate best practices.

D. Use Case Diagram
A use case diagram in the Unified Modeling Language
(UML) is a type of behavioral diagram defined by and
created from a Use-case analysis. Its purpose is to
present a graphical overview of the functionality
provided by a system in terms of actors, their goals
(represented as use cases), and any dependencies
between those use cases. The main purpose of a use
case diagram is to show what system functions are
performed for which actor. Roles of the actors in the
system can be depicted.

More and Singh 186

SEQUENCE DIAGRAM
A sequence diagram in Unified Modeling Language
(UML) is a kind of interaction diagram that shows how
processes operate with one another and in what order. It
is a construct of a Message Sequence Chart. Sequence
diagrams are sometimes called event diagrams, event
scenarios, and timing diagrams.

ACTIVITY DIAGRAM
Activity diagrams are graphical representations of
workflows of stepwise activities and actions with
support for choice, iteration and concurrency. In the
Unified Modeling Language, activity diagrams can be
used to describe the business and operational step-by-
step workflows of components in a system. An activity
diagram shows the overall flow of control.

VI. CONCLUSION
How to protect users’ data privacy is a central question
of cloud storage. With more mathematical tools,
cryptographic schemes are getting more versatile and
often involve multiple keys for a single application. In
this paper, we consider how to “compress” secret keys
in public-key cryptosystems which support delegation
of secret keys for different cipher text classes in cloud
storage. No matter which one among the power set of
classes, the delegate can always get an aggregate key of
constant size. Our approach is more flexible than
hierarchical key assignment which can only save spaces
if all key-holders share a similar set of privileges. A
limitation in our work is the predefined bound of the
number of maximum cipher text classes. In cloud
storage, the number of cipher texts usually grows
rapidly. So we have to reserve enough cipher text
classes for the future extension. Although the parameter
can be downloaded with cipher texts, it would be better
if its size is independent of the maximum number of
cipher text classes. On the other hand, when one carries
the delegated keys around in a mobile device without
using special trusted hardware, the key is prompt to
leakage, designing a leakage-resilient cryptosystem
[22], [34] yet allows efficient and flexible key
delegation is also an interesting direction.

More and Singh 186

SEQUENCE DIAGRAM
A sequence diagram in Unified Modeling Language
(UML) is a kind of interaction diagram that shows how
processes operate with one another and in what order. It
is a construct of a Message Sequence Chart. Sequence
diagrams are sometimes called event diagrams, event
scenarios, and timing diagrams.

ACTIVITY DIAGRAM
Activity diagrams are graphical representations of
workflows of stepwise activities and actions with
support for choice, iteration and concurrency. In the
Unified Modeling Language, activity diagrams can be
used to describe the business and operational step-by-
step workflows of components in a system. An activity
diagram shows the overall flow of control.

VI. CONCLUSION
How to protect users’ data privacy is a central question
of cloud storage. With more mathematical tools,
cryptographic schemes are getting more versatile and
often involve multiple keys for a single application. In
this paper, we consider how to “compress” secret keys
in public-key cryptosystems which support delegation
of secret keys for different cipher text classes in cloud
storage. No matter which one among the power set of
classes, the delegate can always get an aggregate key of
constant size. Our approach is more flexible than
hierarchical key assignment which can only save spaces
if all key-holders share a similar set of privileges. A
limitation in our work is the predefined bound of the
number of maximum cipher text classes. In cloud
storage, the number of cipher texts usually grows
rapidly. So we have to reserve enough cipher text
classes for the future extension. Although the parameter
can be downloaded with cipher texts, it would be better
if its size is independent of the maximum number of
cipher text classes. On the other hand, when one carries
the delegated keys around in a mobile device without
using special trusted hardware, the key is prompt to
leakage, designing a leakage-resilient cryptosystem
[22], [34] yet allows efficient and flexible key
delegation is also an interesting direction.

More and Singh 186

SEQUENCE DIAGRAM
A sequence diagram in Unified Modeling Language
(UML) is a kind of interaction diagram that shows how
processes operate with one another and in what order. It
is a construct of a Message Sequence Chart. Sequence
diagrams are sometimes called event diagrams, event
scenarios, and timing diagrams.

ACTIVITY DIAGRAM
Activity diagrams are graphical representations of
workflows of stepwise activities and actions with
support for choice, iteration and concurrency. In the
Unified Modeling Language, activity diagrams can be
used to describe the business and operational step-by-
step workflows of components in a system. An activity
diagram shows the overall flow of control.

VI. CONCLUSION
How to protect users’ data privacy is a central question
of cloud storage. With more mathematical tools,
cryptographic schemes are getting more versatile and
often involve multiple keys for a single application. In
this paper, we consider how to “compress” secret keys
in public-key cryptosystems which support delegation
of secret keys for different cipher text classes in cloud
storage. No matter which one among the power set of
classes, the delegate can always get an aggregate key of
constant size. Our approach is more flexible than
hierarchical key assignment which can only save spaces
if all key-holders share a similar set of privileges. A
limitation in our work is the predefined bound of the
number of maximum cipher text classes. In cloud
storage, the number of cipher texts usually grows
rapidly. So we have to reserve enough cipher text
classes for the future extension. Although the parameter
can be downloaded with cipher texts, it would be better
if its size is independent of the maximum number of
cipher text classes. On the other hand, when one carries
the delegated keys around in a mobile device without
using special trusted hardware, the key is prompt to
leakage, designing a leakage-resilient cryptosystem
[22], [34] yet allows efficient and flexible key
delegation is also an interesting direction.

More and Singh 187

REFERENCES

[1] S.S.M. Chow, Y.J. He, L.C.K. Hui, and S.-M. Yiu, “SPICE –
Simple Privacy-Preserving Identity-Management for Cloud
Environment,” Proc. 10th Int’l Conf. Applied Cryptography and
Network Security (ACNS), vol. 7341, pp. 526-543, 2012.
[2] L.Hardesty, Secure Computers Aren’t so Secure. MIT press,
http://www.physorg.com/news176107396.html, 2009.
[3] C. Wang, S.S.M. Chow, Q. Wang, K. Ren, and W. Lou,
“Privacy-Preserving Public Auditing for Secure Cloud Storage,”
IEEE Trans. Computers, vol. 62, no. 2, pp. 362-375, Feb. 2013.
[4] B. Wang, S.S.M. Chow, M. Li, and H. Li, “Storing Shared
Data on the Cloud via Security-Mediator,” Proc. IEEE 33rd Int’l
Conf. Distributed Computing Systems (ICDCS), 2013.
[5] S.S.M. Chow, C.-K. Chu, X. Huang, J. Zhou, and R.H. Deng,
“Dynamic Secure Cloud Storage with Provenance,”
Cryptography and Security, pp. 442-464, Springer, 2012.
[6] D. Boneh, C. Gentry, B. Lynn, and H. Shacham, “Aggregate
and Verifiably Encrypted Signatures from Bilinear Maps,” Proc.
22nd Int’l Conf. Theory and Applications of Cryptographic
Techniques (EUROCRYPT ’03), pp. 416-432, 2003.
[7] M.J. Atallah, M. Blanton, N. Fazio, and K.B. Frikken,
“Dynamic and Efficient Key Management for Access
Hierarchies,” ACM Trans. Information and System Security, vol.
12, no. 3, pp. 18:1-18:43, 2009.
[8] J. Benaloh, M. Chase, E. Horvitz, and K. Lauter, “Patient
Controlled Encryption: Ensuring Privacy of Electronic Medical
Records,” Proc. ACM Workshop Cloud Computing Security
(CCSW ’09), pp. 103-114, 2009.
[9] F. Guo, Y. Mu, Z. Chen, and L. Xu, “Multi-Identity Single-
Key Decryption without Random Oracles,” Proc. Information
Security and Cryptology (Inscrypt ’07), vol. 4990, pp. 384-398,
2007.
[10] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-
Based Encryption for Fine-Grained Access Control of Encrypted
Data,” Proc. 13th ACM Conf. Computer and Comm. Security
(CCS ’06), pp. 89-98, 2006.
[11] S.G. Akl and P.D. Taylor, “Cryptographic Solution to a
Problem of Access Control in a Hierarchy,” ACM Trans.
Computer Systems, vol. 1, no. 3, pp. 239-248, 1983.
[12] G.C. Chick and S.E. Tavares, “Flexible Access Control with
Master Keys,” Proc. Advances in Cryptology (CRYPTO ’89),
vol. 435, pp. 316-322, 1989.
[13] W.-G. Tzeng, “A Time-Bound Cryptographic Key
Assignment Scheme for Access Control in a Hierarchy,” IEEE
Trans. Knowledge and Data Eng., vol. 14, no. 1, pp. 182-188,
Jan./Feb. 2002.
[14] G. Ateniese, A.D. Santis, A.L. Ferrara, and B. Masucci,
“Provably-Secure Time-Bound Hierarchical Key Assignment
Schemes,” J. Cryptology, vol. 25, no. 2, pp. 243-270, 2012.
[15] R.S. Sandhu, “Cryptographic Implementation of a Tree
Hierarchy for Access Control,” Information Processing Letters,
vol. 27, no. 2, pp. 95-98, 1988.
[16] Y. Sun and K.J.R. Liu, “Scalable Hierarchical Access
Control in Secure Group Communications,” Proc. IEEE
INFOCOM ’04, 2004.

[17] Q. Zhang and Y. Wang, “A Centralized Key Management
Scheme for Hierarchical Access Control,” Proc. IEEE Global
Telecomm. Conf. (GLOBECOM ’04), pp. 2067-2071, 2004.
[18] J. Benaloh, “Key Compression and Its Application to Digital
Fingerprinting,” technical report, Microsoft Research, 2009.
[19] B. Alomair and R. Poovendran, “Information Theoretically
Secure Encryption with Almost Free Authentication,” J.
Universal Computer Science, vol. 15, no. 15, pp. 2937-2956,
2009.
[20] D. Boneh and M.K. Franklin, “Identity-Based Encryption
from the Weil Pairing,” Proc. Advances in Cryptology (CRYPTO
’01), vol. 2139, pp. 213-229, 2001.
[21] A. Sahai and B. Waters, “Fuzzy Identity-Based Encryption,”
Proc. 22nd Int’l Conf. Theory and Applications of Cryptographic
Techniques (EUROCRYPT ’05), vol. 3494, pp. 457-473, 2005.
[22] S.S.M. Chow, Y. Dodis, Y. Rouselakis, and B. Waters,
“Practical Leakage-Resilient Identity-Based Encryption from
Simple Assumptions,” Proc. ACM Conf. Computer and Comm.
Security, pp. 152-161, 2010.
[23] F. Guo, Y. Mu, and Z. Chen, “Identity-Based Encryption:
How to Decrypt Multiple Ciphertexts Using a Single Decryption
Key,” Proc. Pairing-Based Cryptography Conf. (Pairing ’07), vol.
4575, pp. 392-406, 2007.
[24] M. Chase and S.S.M. Chow, “Improving Privacy and
Security in Multi-Authority Attribute-Based Encryption,” Proc.
ACM Conf. Computer and Comm. Security, pp. 121-130. 2009,
[25] T. Okamoto and K. Takashima, “Achieving Short
Ciphertexts or Short Secret-Keys for Adaptively Secure General
Inner-Product Encryption,” Proc. 10th Int’l Conf. Cryptology and
Network Security (CANS ’11), pp. 138-159, 2011.
[26] R. Canetti and S. Hohenberger, “Chosen-Ciphertext Secure
Proxy Re-Encryption,” Proc. 14th ACM Conf. Computer and
Comm. Security (CCS ’07), pp. 185-194, 2007.
[27] C.-K. Chu and W.-G. Tzeng, “Identity-Based Proxy Re-
encryption without Random Oracles,” Proc. Information Security
Conf. (ISC ’07), vol. 4779, pp. 189-202, 2007.
[28] C.-K. Chu, J. Weng, S.S.M. Chow, J. Zhou, and R.H. Deng,
“Conditional Proxy Broadcast Re-Encryption,” Proc. 14th
Australasian Conf. Information Security and Privacy (ACISP
’09), vol. 5594, pp. 327342, 2009.
[29] S.S.M. Chow, J. Weng, Y. Yang, and R.H. Deng, “Efficient
Unidirectional Proxy Re-Encryption,” Proc. Progress in
Cryptology (AFRICACRYPT ’10), vol. 6055, pp. 316-332, 2010.
[30] G. Ateniese, K. Fu, M. Green, and S. Hohenberger,
“Improved Proxy Re-Encryption Schemes with Applications to
Secure Distributed Storage,” ACM Trans. Information and
System Security, vol. 9, no. 1, pp. 1-30, 2006.
[31] D. Boneh, C. Gentry, and B. Waters, “Collusion Resistant
Broadcast Encryption with Short Ciphertexts and Private Keys,”
Proc. Advances in Cryptology Conf. (CRYPTO ’05), vol. 3621,
pp. 258-275, 2005.
[32] L.B. Oliveira, D. Aranha, E. Morais, F. Daguano, J. Lopez,
and R. Dahab, “TinyTate: Computing the Tate Pairing in
Resource-Constrained Sensor Nodes,” Proc. IEEE Sixth Int’l
Symp. Network Computing and Applications (NCA ’07), pp.
318-323, 2007.

http://www.physorg.com/news176107396.html

